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Introduction

o Mutation of pathogens may occur on the same time scale as
disease transmission

e Host carries a population of pathogens, which mutate as they
replicate

e Transmission event moves a sample of the pathogen population to
a new host

o Assumption: More closely related pathogen genetic samples are
more likely to be connected by a transmission event
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Introduction

e Phylogenetics studies evolutionary history and relationship
among organisms
e Simple phylogeny will not capture the transmission dynamics
properly (Ypma et al., 2013)
e Phylogeny does not show direction of transmission
o Ancestors and descendants may be sampled

Time
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\

A phylogeny generated by a small outbreak. (Didelot et al., 2014)
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Phylodynamics

o Phylodynamic models unify phylogenetics and epidemiology
(Grenfell et al., 2004)

e Explicitly account for the interacting dynamics of transmission
and mutation

e Modeling of data-generating processes within host and pathogen
populations (Klinkenberg et al., 2017):
o Mutations in DNA/RNA sequence
e Within-host evolution of pathogen population into variant
subpopulations
e Transmission network of “who-infected-whom” and timing of
transmission
o Case observations (unsampled hosts)
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Phylodynamic Applications

e Basic reproduction number Ry

Original pathogen source and timing

Effectiveness of control efforts

Rate of spread

Viral population size

e Transmission risk and population heterogeneity
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Previous Phylodynamic Methods

e Two stage: infer epidemiological quantities after inferring
phylogeny
e Phylogeny does not depend on epidemic transmission

Time

————— Ainfects B

— — — Ainfects D

— -Dinfects C

(Didelot et al., 2014)
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Motivating Data

e Swine influenza HIN1 and H3N2 outbreak among pigs at a county
fair

e Pigs act as “mixing vessels” for different subtypes of
influenza
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Motivating Data

o Pigs densely sampled with a nasal swab influenza test at
weigh-in, nightly, and at auction

o 2,729 tests performed on 425 pigs over 7 days
e 408 pigs tested positive at least once before the end of the fair

A champion barrow (male) and gilt (female) from the fair.
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Motivating Data
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Big Picture Importance

e Variant viruses that originate and spread at county fairs can jump
to humans

e Hypothesized 2009 HIN1 pandemic influenza origin in commercial
swine farms in Mexico

Close interaction between humans and pigs at a county fair. Source: Science
Magazine
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Complete-data Likelihood

o Complete-data likelihood ties observed and unobserved processes
together

e Epidemiological process: model parameters (0), transmission
network (¥), transmission times T

e Genomic process: transmitted and sampled genomic sequences
(G), mutation parameters in ©

e Putting it all together, our complete-data likelihood is

L(©;T,G,¥)=L(6;T,¥) x L(©; G|T, V)
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SEIR Model: Exposure

o Individuals begin in susceptible category
@ Spatiotemporal process:
e Exposure accumulates from currently infectious hosts
o Closer hosts are a more probable source of infection, modeled via
distance kernel K (x, d;;)
e Small probability of exposure from the background (unobserved

source, etc.)
la

BK (x, dji)
| BK (x, dj;)

i k
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SEIR Model: Accumulated Exposure

e Function ¢;(T") accumulates exposure to pathogen for individual j
until time 7"

T
(M) = [ {a+ > BxK(kdy)}
=0 iexr(t),ii

@ When accumulated exposure reaches random, individual threshold,
j switches from susceptible to exposed
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SEIR Model: Infection and Removal

o After an individual is exposed to a strain, it spends a sojourn time
in the exposed compartment which follows Gamma(a, b)
distribution

o Individual spends sojourn time in the infectious compartment
following a Weibull(-y,n) distribution

e After infectious period, recovery/removal occurs
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Lau 2015

e “A Systematic Bayesian Integration of Epidemiological and
Genetic Data” (Lau et al., 2015)

e Joint single-stage inference of transmission network, exposure
time, and genetic sequence of transmitted virus

e Genuine complete-data likelihood for data augmentation MCMC

e Performed best in methods comparison reconstructing

Foot-and-Mouth Disease outbreak transmission network (Firestone
et al., 2019)
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Genomic Model: Lau 2015

e Pathogen genetic sequence mutates through time independently
within each host

e Sequences Gj 1, G| 2, ... observed at sampling times

e Mutations from G;1 — G;2 and G; 2 — G; 3 are conditionally
independent

e Calculating complete data likelihood requires G; 2 and G

c';i,l Gi,Z Gi,3 Gi,4

Pigi

A= — — — — -

Pigj
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Kimura Mutation Model

o Nucleotide bases in sequence mutate independently
e Continuous-time Markov process: probability of any mutation
increases through time

e Two-parameter Kimura Model (Kimura, 1980), rate of transition
(u1) different than rate of transversion (us2)

o Transition: Mutation within pyrimidines or purines (A to G or T
to C, vice versa)

o Transversion: Mutation between pyrimidines and purines (A to
T/C, T to A/G, etc.)

0.25 + 0.25e 42t (0 5e2(m1+1u2)A for 4 =y
Py (ylm, At) = < 0.25 + 0.25e 4288 — (. 5e=2(m+4#2)AL transition

0.25 — 0.25¢ 24t transversion
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Genomic Model: Lau 2015

e Key innovation of model was imputing unobserved sequences

e Problem: Computation time and DNA storage hinders

scalability
G, G, Gi; G4
Pigi T
1
|
|
|
1
Pig j L
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Our Proposal

o Model genetic mutation at the sequence level
@ Count of base pair mutations through time as a Poisson process
o “Infinite sites” model

e Genetic sequence accumulates mutations, no reversion

Pigi

Pigj
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Our Proposal

Ajr ~ Poisson(A +{Tj1 — Tjo})

A = average base pair mutations per unit time

Pigi

- = — = — =

Pigj
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Implementation and Inference
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Inference

e Data augmentation Markov Chain Monte Carlo (MCMC)
to obtain posterior distributions on parameters 6 and missing data
y, given observed data x

o Alternate update of § and y
o Update 6 given x,y using p(0|z,y)
o Update y given x, 8 using p(y|x, 0)
e Challenge: efficiently (and correctly!) propose values to explore
high-dimensional model space

Hannah Waddel Senior Student Presentation 25 /39



MCMC Algorithm

Metropolis-Hastings algorithm framework (Hastings, 1970)
e Acceptance probability of proposed parameter 6':
(©'lz) p0)  q(6]6")

) L
pu = mindl TGy X @) < g(016)

Where

o L is the likelihood
e p is the prior
e ¢ is the proposal distribution

Scalar parameters {«, 3, K, A, ...} proposed as random normal walk

Everything else (transmission tree, infection time, genetic
mutation, ...) is a custom algorithm implemented in Rcpp for
scalability
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Preliminary Results
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Model Fit

e Fit to full data simulated under the more complicated Kimura
Model

e Estimation of key epidemic parameters generally robust to model
misspecification
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Computation Time
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Topic 2: Multiple Circulating Subtypes

Hannah Waddel Senior Student Presentation 29 /39



Pathogen Outbreak Processes

Host 1

Host 2

[ ]
o ® o
ee0
I Testing/sequencing
I
o ®® °®
Population Path . .
athogen mutation
growth . . . . .

Disease transmission

Hannah Wad




Multi-subtype Scenario
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Multi-subtype Scenario

@ More than one subtype of a pathogen can circulate and interact

within hosts (Influenza, SARS CoV-2...)

e Transmission network complicated by coinfection and

superinfection

e Coinfection: Two subtypes of a pathogen transmitted by one host

carrying both

e Superinfection: T'wo subtypes of a pathogen transmitted by two

hosts to one recipient

Coinfection

Superinfection
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Proposed Model
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Multi-subtype Exposure

@ A host may be exposed to subtype A, subtype B, or both at one
time
Susceptible Subtype B

j Infectious pressure: B
B
Pressure: A ]

™ ™

Subtype A Both subtypes
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MCMC Implementation

e Data Augmentation Markov Chain Monte Carlo

o Challenge: Switching coinfected vs. superinfected status for
individuals in proposal ¢ distribution

e High-dimensional model with changing dimensions of transmission
source if status switches

@ Developing and implementing Reversible-Jump MCMC algorithm
to switch models (Green, 1995)

Hannah Waddel Senior Student Presentation 36 /39



Preliminary Results
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e Simulation and complete-data likelihood are implemented correctly
and recapture scalar parameters with known transmission network

e Current work: Implementing data augmentation portion of

MCMC (estimating exposure time and transmission network with
co- and superinfection)
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Further Work
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