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Problem setting
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Introduction

Mutation of pathogens may occur on the same time scale as
disease transmission

Host carries a population of pathogens, which mutate as they
replicate

Transmission event moves a sample of the pathogen population to
a new host

Assumption: More closely related pathogen genetic samples are
more likely to be connected by a transmission event
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Pathogen Outbreak Process
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Introduction

Phylogenetics studies evolutionary history and relationship
among organisms
Simple phylogeny will not capture the transmission dynamics
properly (Ypma et al., 2013)

Phylogeny does not show direction of transmission
Ancestors and descendants may be sampled

A phylogeny generated by a small outbreak. (Didelot et al., 2014)

Hannah Waddel Senior Student Presentation 3 / 39



Phylodynamics

Phylodynamic models unify phylogenetics and epidemiology
(Grenfell et al., 2004)

Explicitly account for the interacting dynamics of transmission
and mutation

Modeling of data-generating processes within host and pathogen
populations (Klinkenberg et al., 2017):

Mutations in DNA/RNA sequence
Within-host evolution of pathogen population into variant
subpopulations
Transmission network of “who-infected-whom” and timing of
transmission
Case observations (unsampled hosts)
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Phylodynamic Applications

Basic reproduction number R0

Original pathogen source and timing

Effectiveness of control efforts

Rate of spread

Viral population size

Transmission risk and population heterogeneity
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Previous Phylodynamic Methods

Two stage: infer epidemiological quantities after inferring
phylogeny

Phylogeny does not depend on epidemic transmission

(Didelot et al., 2014)

Hannah Waddel Senior Student Presentation 6 / 39



Motivating Data

Swine influenza H1N1 and H3N2 outbreak among pigs at a county
fair

Pigs act as “mixing vessels” for different subtypes of
influenza

Andrew Bowman (OSU) sampling pigs. Source: Science Magazine
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Motivating Data

Pigs densely sampled with a nasal swab influenza test at
weigh-in, nightly, and at auction

2,729 tests performed on 425 pigs over 7 days

408 pigs tested positive at least once before the end of the fair

A champion barrow (male) and gilt (female) from the fair.
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Motivating Data
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Big Picture Importance

Variant viruses that originate and spread at county fairs can jump
to humans
Hypothesized 2009 H1N1 pandemic influenza origin in commercial
swine farms in Mexico

Close interaction between humans and pigs at a county fair. Source: Science
Magazine
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Model Framework

Hannah Waddel Senior Student Presentation 11 / 39



Pathogen Outbreak Processes
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Complete-data Likelihood

Complete-data likelihood ties observed and unobserved processes
together

Epidemiological process: model parameters (Θ), transmission
network (Ψ), transmission times T

Genomic process: transmitted and sampled genomic sequences
(G), mutation parameters in Θ

Putting it all together, our complete-data likelihood is

L (Θ;T,G,Ψ) = L (Θ;T,Ψ)× L(Θ;G|T,Ψ)
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Pathogen Outbreak Processes
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SEIR Model: Exposure

Individuals begin in susceptible category
Spatiotemporal process:

Exposure accumulates from currently infectious hosts
Closer hosts are a more probable source of infection, modeled via
distance kernel K(κ, dij)

Small probability of exposure from the background (unobserved
source, etc.)
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SEIR Model: Accumulated Exposure

Function qj(T ) accumulates exposure to pathogen for individual j
until time T :

qj(T ) =

∫ T

t=0
{α+

∑
i∈χI(t),i ̸=j

β ∗K(κ, dij)}

When accumulated exposure reaches random, individual threshold,
j switches from susceptible to exposed
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SEIR Model: Infection and Removal

After an individual is exposed to a strain, it spends a sojourn time
in the exposed compartment which follows Gamma(a, b)
distribution

Individual spends sojourn time in the infectious compartment
following a Weibull(γ, η) distribution

After infectious period, recovery/removal occurs
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Pathogen Outbreak Processes
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Pathogen Outbreak Processes
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Lau 2015

“A Systematic Bayesian Integration of Epidemiological and
Genetic Data” (Lau et al., 2015)

Joint single-stage inference of transmission network, exposure
time, and genetic sequence of transmitted virus

Genuine complete-data likelihood for data augmentation MCMC

Performed best in methods comparison reconstructing
Foot-and-Mouth Disease outbreak transmission network (Firestone
et al., 2019)
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Genomic Model: Lau 2015

Pathogen genetic sequence mutates through time independently
within each host

Sequences Gi,1, Gi,2, ... observed at sampling times

Mutations from Gi,1 → Gi,2 and Gi,2 → Gi,3 are conditionally
independent

Calculating complete data likelihood requires Gi,2 and Gj,0
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Kimura Mutation Model

Nucleotide bases in sequence mutate independently

Continuous-time Markov process: probability of any mutation
increases through time

Two-parameter Kimura Model (Kimura, 1980), rate of transition
(µ1) different than rate of transversion (µ2)

Transition: Mutation within pyrimidines or purines (A to G or T
to C, vice versa)
Transversion: Mutation between pyrimidines and purines (A to
T/C, T to A/G, etc.)

Pµ1,µ2(y|x,∆t) =


0.25 + 0.25e−4µ2∆t + 0.5e−2(µ1+µ2)∆t, for x = y

0.25 + 0.25e−4µ2∆t − 0.5e−2(µ1+µ2)∆t, transition

0.25− 0.25e−4µ2∆t, transversion
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Genomic Model: Lau 2015

Key innovation of model was imputing unobserved sequences

Problem: Computation time and DNA storage hinders
scalability
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Our Proposal

Model genetic mutation at the sequence level

Count of base pair mutations through time as a Poisson process
“Infinite sites” model

Genetic sequence accumulates mutations, no reversion
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Our Proposal

∆j,1 ∼ Poisson(λ ∗ {Tj,1 − Tj,0})

λ = average base pair mutations per unit time
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Implementation and Inference
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Inference

Data augmentation Markov Chain Monte Carlo (MCMC)
to obtain posterior distributions on parameters θ and missing data
y, given observed data x

Alternate update of θ and y
Update θ given x, y using p(θ|x, y)
Update y given x, θ using p(y|x, θ)

Challenge: efficiently (and correctly!) propose values to explore
high-dimensional model space
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MCMC Algorithm

Metropolis-Hastings algorithm framework (Hastings, 1970)

Acceptance probability of proposed parameter θ′:

pa = min{1, L(θ
′|z)

L(θ|z)
× p(θ′)

p(θ)
× q(θ|θ′)

q(θ′|θ)
}

Where

L is the likelihood
p is the prior
q is the proposal distribution

Scalar parameters {α, β, κ, λ, ...} proposed as random normal walk

Everything else (transmission tree, infection time, genetic
mutation, ...) is a custom algorithm implemented in Rcpp for
scalability
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Preliminary Results
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Model Fit

Fit to full data simulated under the more complicated Kimura
Model

Estimation of key epidemic parameters generally robust to model
misspecification
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Computation Time
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Topic 2: Multiple Circulating Subtypes
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Pathogen Outbreak Processes
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Multi-subtype Scenario
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Multi-subtype Scenario

More than one subtype of a pathogen can circulate and interact
within hosts (Influenza, SARS CoV-2...)

Transmission network complicated by coinfection and
superinfection

Coinfection: Two subtypes of a pathogen transmitted by one host
carrying both
Superinfection: Two subtypes of a pathogen transmitted by two
hosts to one recipient
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Proposed Model
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Multi-subtype Exposure

A host may be exposed to subtype A, subtype B, or both at one
time
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MCMC Implementation

Data Augmentation Markov Chain Monte Carlo

Challenge: Switching coinfected vs. superinfected status for
individuals in proposal q distribution

High-dimensional model with changing dimensions of transmission
source if status switches

Developing and implementing Reversible-Jump MCMC algorithm
to switch models (Green, 1995)
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Preliminary Results

Simulation and complete-data likelihood are implemented correctly
and recapture scalar parameters with known transmission network

Current work: Implementing data augmentation portion of
MCMC (estimating exposure time and transmission network with
co- and superinfection)
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Further Work
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